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4. FIRST STEPS IN THE 

THEORY 
 

§4.1. A Catalogue of All Groups: 

Impossible Dream 
 The fundamental problem of group theory is to 

systematically explore the landscape and to chart what 

lies out there. We’d like 

to have a catalogue of 

all groups, or perhaps 

just all finite groups: a 

catalogue that would 

provide one specimen 

of each group so that 

we’d be able to say that 

every group, or every 

finite group, is 

isomorphic to exactly one of the specimens in our 

catalogue. In particular we’d know exactly how many 

groups there are of any given order. 

 This is an impossible dream, but not simply 

because there are infinitely many finite groups. After all 

there are infinitely many finite-dimensional vector spaces 

over a given field yet we can describe them all in the 

single statement that every finite-dimensional vector 

space over a field F is isomorphic to the space of n-tuples 

(x1, x2, ... , xn) over F for some n. This is just a corollary 
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of the theorem that every finite-dimensional vector space 

has a basis. In other words there’s exactly one vector 

space over F (up to isomorphism) for each dimension. 

 Structure theorems exist in various parts of 

mathematics. We know all the finite fields. In topology 

the compact surfaces are all known. Within group theory 

itself we have a number of classification theorems. For 

example we know all the finite abelian groups, via the 

Fundamental Theorem of Abelian Groups that we’ll 

prove in a later chapter. 

 The most celebrated example is the classification 

of all finite ‘simple’ groups. Don’t worry now what a 

simple group is. In a certain sense they’re the building 

blocks of all finite groups but the term ‘simple’ is 

deceptive..  They’re not the most elementary of groups 

but their simplicity refers to the fact that they can’t be 

pulled apart, in a certain way, into smaller groups. 

They’re the atoms of the universe of finite groups. 

 Now this celebrated theorem is the culmination of 

virtually a century’s work by many thousands of group 

theorists and its proof is scattered over numerous research 

journals in the literature. It has never been assembled in 

one place because it’s estimated that it would occupy 

about 20,000 pages and because of this it has even made 

it to the Guinness Book of Records as the theorem with 

the longest proof! 

 The goal of this chapter is to develop enough of the 

theory to enable us to prove a couple of classification 

theorems; nothing as ambitious as the one we were just 
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talking about – just a couple of nice, gentle theorems. 

Together they describe, for each prime p, the groups of 

order p and of order 2p. There aren’t very many such 

groups for a given prime. In fact there’s only one group 

of order p and just two of order 2p. So contrary to what 

you might expect the number of different groups doesn’t 

grow steadily with the group order. The groups of order 

32 have been catalogued and there are over 50 of them. 

But there’s only one group of order 31 because 31 is 

prime and there are just two groups of order 34. 

 

§4.2. Additive and Multiplicative  

Notation 
  Until now we’ve written the combination of a and 

b in an abstract group as a * b. But, unless there’s danger 

of confusion, it’s more usual to write the binary operation 

as if it was addition or multiplication. 

 If we’re proving theorems about abstract groups in 

general, where the group could be non-abelian, we use 

multiplicative notation. If the groups we’re considering 

are all abelian we normally use additive notation. The 

reason for this distinction is that we’re used to 

multiplication being non-commutative (for example 

matrices and permutations), but in all the systems we’ve 

ever encountered, addition is commutative. It’s very 

dangerous therefore to use additive notation in a non-

commutative group. 
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 Just remember that even though we use 

multiplicative or additive notation the operation might be 

quite different to ordinary multiplication or addition of 

numbers. 

 

§4.3. Basic Properties of Groups 
 Having motivated you in terms of group theory, 

and giving a huge number of examples of many different 

types I now intend to make a fresh beginning. Indeed this 

is where most books on group theory begin. I will restate 

the definition and slowly build up the theory. 

 So, recall the definition of a group as a set with one 

associative binary operation for which there is an identity 

and where each element has an inverse. Notice that there 

is nothing in this definition that precludes a group from 

having multiple identities or an element having more than 

one inverse. But in fact a group can only have one 

identity, and inverses are unique. Because of this it makes 

sense to adopt a symbol for the identity (1 in 

multiplicative notation and 0 in additive notation). 

GENERAL 

NOTATION 

MULTIPLICATIVE 

NOTATION 

ADDITIVE 

NOTATION 

a * b ab a + b 

a * a * ... * a a
n
 na 

e 1 0 

inverse of a a
−1

 −a 
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Moreover the notation a−1 or −a would be misleading if 

there were multiple inverses. 

 

Theorem 1: The identity element of a group is unique. 

Proof: Suppose  e, f  are identities for a group G. 

Then e = e f (since f is an identity) = f (since e is an 

identity).☺ 

 

Theorem 2: Each element of a group has only one 

inverse. 

Proof: Suppose  b, c  are both inverses of the element  a  

in a group G. 

Then b = b1 = b (ac) = (ba) c = 1c = c. ☺ 

 

NOTE: It is the associative law that ensures that inverses 

are unique. Algebraic systems that are not associative can 

indeed have multiple inverses. For example, the following 

system is closed and has an identity. Moreover every 

element has an inverse. In fact some elements have two 

inverses. But it isn’t a group because it’s not associative. 

 

 

 

 

 

Note that (aa)b = 1b = b while a(ab) = a1 = a. 

  

 1 a b 

1 1 a b 

a a 1 1 

b b 1 1 
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Theorem 3: (Cancellation Law): 

If ax = ay in a group then x = y. 

Proof: Suppose ax = ay.  Then a−1 (ax) = a−1 (ay). 

Hence (a−1a)x = (a−1a)y.  Thus 1x = 1y and so x = y. ☺ 

 

Notice that all the group axioms (except the Closure Law) 

are needed to prove this. 

 

 Similarly one can prove that  xa = ya  implies that 

x = y. Thus cancellation on the left, or on the right, is 

possible in a group. A consequence of the cancellation 

law is that: 

 

Every element appears exactly once and only once in 

each row and column of the group table. 

 

 You should take careful note of the fact that you 

can’t cancel on the left-hand end of one side of the 

equation and on the right-hand end of the other. In other 

words  ax = xb  does not imply that  a = b. 

 

§4.4. Subgroups 
Recall the definition of subgroup. If G is a group and H is 

a subset of G then H is a subgroup if 

   (1) xy H for all x, y  H 

   (2) 1  H 

   (3) x−1  H for all x  H. 
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A subgroup H is a group in its own right. Every group is 

a subgroup of itself. All other subgroups are called 

proper subgroups. The trivial subgroup, 1 = {1} is a 

subgroup of any group. 

 

Notation: H  G means ‘H is a subgroup of G’ and H < 

G means ‘H is a proper subgroup of G’, that is, H is a 

subgroup but is not G itself. 

 

Example 1: 2ℤ (the group of even integers) is a proper 

subgroup of ℤ (under +). 

 

Theorem 4: For all g  G, g is a subgroup of G. 

Proof: For all r, s  ℤ+, gr gs = gr+s  g;  1 = g0  g 

and for all r, (gr)−1 = g−r  g. ☺ 

 

§4.5. Powers 
 If  g  is an element of a group, we define positive 

integer powers of  g  inductively as follows: 

 g0 = 1; 

 gn+1 = gn g for all n  0. 

We define negative powers by g−n = (g−1)n for all negative 

integers −n. 

 

Theorem 5:  For all natural numbers  m, n  and all 

elements  a, b  in a group G: 

(1) am an = am+n;            (2) (am)n = amn; 

(3) (b−1ab)n = b−1anb;    (3) if G is abelian, (ab)n = anbn. 
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Proof:  Although these seem obvious enough (and indeed 

they are obvious if  m  and  n  are positive, just by counting 

factors) the cases where one or both are negative require 

special attention. 

(1) This is obvious if both  m, n  are positive or zero. 

Suppose  m  is positive and  n  is negative, say  n = −r 

where r is positive. If  m  r  then on the left hand side 

there will be  r  cancelling pairs of aa−1  leaving  m − r = 

m + n  factors. If  m < r  there will be only  m  such pairs 

leaving r − m factors of a−1. The result is therefore 

a−(r−m) = am−r = am+n. 

 We’ve thus proved the result for all  n  where  m  

0. If  m  is negative, say  m = −s, then putting  b = a−1  the 

left hand side  is  bsb−n. By the earlier case this is  bs−n = 

an−s = am+n. 

(2) Again this is obvious if  m, n  are both positive. The 

other cases are left as an exercise. 

(3) If  n  is positive we simply count the number of factors 

on each side. Because the group is assumed to be abelian 

the factors may be rearranged so all the  a's  can be 

brought to the front. If  n  is zero, LHS = RHS = 1. If  n  

is negative we put  b = a−1  and use the positive case. 

(4) If  n  is positive,  (b−1ab)n = b−1(bb−1) a(bb−1) ... (bb−1)ab 

(n factors) =  b−1aa ... ab 

                                = b−1anb. 

If n = 0, LHS = RHS = 1. If  n  is negative we use the 

positive case on  b−1cb  where  c  is defined to be  a−1. ☺ 
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Theorem 6: In a group G,  (ab)−1 = b−1a−1. 

Proof: (b−1a−1)(ab) = b−1(a−1a) b = b−1b = 1 and similarly 

(ab)(b−1a−1) = 1. ☺ 

Remember that the inverse of a product is the product of 

the inverses in reverse order. 

 

The cyclic subgroup generated by an element g is the set 

of all powers of g (including 1 as g0 and negative powers). 

It’s denoted by  g . 

 

Definition:  The order of an element g of a group is the 

smallest positive integer n such that gn = 1 (if such an  n  

exists). In additive notation this becomes ng = 0. 

The identity element of any group is the only element of 

order 1. 

 

 The order of g is denoted by g. If there’s no such 

positive n, we say that g has infinite order. For example 

the order of i in the group of non-zero complex numbers 

under multiplication is 4 since i4 = 1 while no lower 

positive power is equal to 1. The number 2 has infinite 

order.  

 

Theorem 7: The order of an element g  G is at most |G|. 

Proof: Let n = |G|.  The elements 1, g, g2, ... gn−1, gn can’t 

be distinct (there are n+1 of them in a group of order n). 

Hence there must be some repetition: gr = gs for some r, s 

with 0  r < s  n. Thus gs−r = 1 and since 0 < r < s  n, 

we must have g  n. ☺ 
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 Later, we’ll prove that, in fact, the order of an 

element of G divides the order of G. 

 

Theorem 8: Groups of even order must contain an 

element of order 2. 

Proof: Suppose |G| is even. Now the elements of G that 

differ from their inverses must come in pairs {x, x−1}. 

Since |G| is even, the remaining elements, those for which 

x = x−1, must also be even in number. But x = x−1 is 

equivalent to x2 = 1 and so these are the elements of order 

2, together with the identity. Leaving out the identity, 

there must be an odd number of elements of order 2 and 

so the number of elements of order 2 must be at least 1. 
☺ 

 

Theorem 9: If all of the elements of G (except 1) have 

order 2, then G must be abelian. 

Proof: Let x, y  G.  Then (xy)2 = 1. But also x2y2 = 1 and 

so xyxy = xxyy. 

Multiplying by x−1 on the left and by y−1 on the right of 

each side of this equation we conclude that yx = xy. Since 

this holds for all x, y  G it follows that G is abelian. ☺ 

 

§4.6. Cyclic Groups 
 A group G is cyclic if it can be generated by a single 

element, that is if G =  g  for some g  G. 
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Example 2: The set of n-th roots of unity: 

{z  ℂ  zn = 1} 

is a group under multiplication. It is a cyclic group 

because it can be generated by e2i/n. This is because every 

n-th root of 1 has the form e2ki/n = (e2i/n)k. In particular 

the group of 4-th roots of unity is 

{1, i, −1, −i} 

which is generated by i. 

 

Example 3: The group of symmetries of a parallelogram 

is {I, R} where R is a 180° rotation about its centre. This 

group is a cyclic group generated by R. 

 

Example 4: The group (ℤ, +) of integers under addition 

is cyclic because it can be generated by the integer 1. 

Remember that we’re using additive notation here so 

instead of saying that every integer is an integer power of 

1 (which is not the case), we should be saying that every 

integer is an integer multiple of 1 (which it is). Note that 

−1 also generates this group, but ±1 are the only 

generators. 

 

Theorem 10: Cyclic groups are abelian. 

Proof: Two typical elements in the cyclic group g are gr 

and gs. Now grgs = gr+s = gsgr. So every pair of elements 

commute and hence the cyclic group is abelian. ☺ 
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Theorem 11: A finite group of order n is cyclic if and 

only if it contains an element of order n. 

Proof: Suppose that G = n and G has an element g of 

order n. Then g, the cyclic subgroup generated by g, has 

order n (that is there are n distinct powers of g). Thus there 

are no other elements in G. They’re all powers of g and 

so  g  is a generator for G and hence G is cyclic. 

 Conversely suppose that G is a cyclic group of 

order  n. Then, if  g  is a generator,  g must have order  n. 
☺ 

 

Example 5: The group given by the following group table 

isn’t cyclic since it has no element of order 4. 

 

§4.7. Cosets and Lagrange’s Theorem 
Let H  G. Define a relation  by defining  x  y  if 

x = yh  for some  h  H. 

 

Theorem 12:  is an equivalence relation. 

Proof: Reflexive Let a  G. Then a = a1. 

Since 1  H, a  a. 

Symmetric Suppose a  b. Then a = bh for some h  H. 

Hence ah−1 = b. 

               A B C D 

A A B C D 

B B A D C 

C C D A B 

D D C B A 
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Since h−1  H, b  a. 

Transitive Suppose a  b and b  c. Then a = bh for some 

h  H and b = ck for some k  H. 

Thus a = (ck)h = c(kh).  Since kh  H, a  c. ☺ 

NOTE: Each of the three properties of an equivalence 

relation comes from one of the three closure properties of 

a subgroup. 

 

The equivalence classes under  are called the right 

cosets of H in G. 

Notation: gH denotes the right coset containing g. 

NOTE: Left cosets are defined similarly. 

Note also that some books define left and right cosets in 

the opposite manner. 

 

Example 6: G = ℝ#, H = {±1} under the operation of 

multiplication. The cosets are all of the form {± x}. 

 

Example 7: G = ℂ#, the group of non-zero complex 

numbers under multiplication, and let H be the subgroup 

of all complex numbers with modulus 1. The right (or left) 

cosets of H in G are all the circles with centre 0. 

 

Example 8: Suppose G = S3 and H = {I, (12)}. 

The left and right cosets of H in G are: 

HI = {I.I, (12)I} = {I, (12)}   IH = {I.I, I(12)} = {I, (12)} 

H(13) = {I(13), (12)(13)} = {(13), (123)} 

(13)H = {(13)I, (13)(12)} = {(13), (132)} 

H(23) = {I(23), (12)(23)} = {(23), (132)} 
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(23)H = {(23)I, (23)(12)} = {(23), (123)}. 

Notice that in this case, left and right cosets are different. 

 

Example 9: G = S3,   H = {I, (123), (132)}. Here the left 

and right cosets give the same decomposition of G. These 

two (left/right) cosets are H itself and {(12), (13), (23)}. 

 

Theorem 13:  

(1) The subgroup H is itself one of the cosets of H in G. 

(2) Two elements  a, b  belong to the same right coset (of 

H in G) if and only if b−1a  H. 

Proof: 

(1) H = 1H. 

(2)  a, b belong to the same right coset  if and only if   a  

b, that is, if and only if  a = bh for some h  H, that is, if 

and only if  b−1a = h for some h  H, or more simply, 

b−1a  H. ☺ 

 

Equivalence classes in general can be of different sizes, 

but cosets of a given subgroup must have the same size. 

 

Theorem 14: If H  G, every coset of H in G has H 

elements. 

Proof: There’s a natural 1-1 correspondence between any 

coset aH and H itself viz. ah  h.  Hence the number of 

elements in each is the same. ☺ 
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Theorem 15: (LAGRANGE) The order of a subgroup of 

a finite group divides the order of the group. 

Proof: Suppose there are m cosets of H in G. Since G is 

the disjoint union of them and each coset has H elements, 

it follows that G = m. H and so H divides G. ☺ 

 

This is a very powerful result. It shows that the number of 

elements in a group greatly affects its structure. 

 

Example 10: If  G = 14 , the only possible orders for a 

subgroup are 1, 2, 7 and 14. 

 

Theorem 16: Groups of prime order are cyclic. 

Proof: Suppose G = p where p is prime. 

Since p  2 we may choose g  G such that g  1. 

Let H = g. 

Let H = n. Now  n|p  and n > 1 so n = p. Hence G = H 

and so G is cyclic. ☺ 

 

Since the order of an element is the order of the cyclic 

subgroup it generates, we have: 

 

Theorem 17: The order of an element of a finite group 

divides the order of the group. ☺ 

 

 Lagrange’s Theorem is a powerful one. But its 

converse does not hold in general. Just because a number 

divides the group order doesn’t mean there has to be a 
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subgroup of that order. For example A4 has order 12, but 

no subgroup of order 6. 

 However if a prime power divides |G| there is at 

least one subgroup of that order. This is part of what is 

known as the Sylow Theorems. Here we prove the special 

case where the divisor is just a prime. 

 

Theorem 18 (CAUCHY): If p is a prime divisor of |G| 

there is an element of G of order p. 

Proof:  Consider all equations of the form g1g2 … gp = 1 

where the gi  G. 

There are |G|p−1 such equations, because the first p − 1 

factors can be chosen arbitrarily and the last one has to be 

the inverse of their product. 

Now if g1g2 … gp = 1 is one of these equations then so is 

g2g3 … gpg1 = 1. We just multiply both sides on the left 

by g1
−1 and on the right by g1. In fact we can bring any 

number of the factors from the left-hand side and bring 

them to the right. Any cyclic rearrangement of the factors 

will also give one of these equations. 

 You might think that the set of these equations can 

be decomposed into sets of size p in  this way. But what 

if every factor is equal? For example the cyclic 

rearrangements of the equation 1.1. … 1 = 1 will give just 

one equation not  p  distinct equations. 

 While ever two of the factors are different the 

cyclic rearrangements will be distinct. Notice that it is 

important for p to be prime for this to work because if p = 
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6 then ababab = 1 would only have two distinct cyclic 

arrangements. 

 Now if G has no element of order p then 1.1 … 1 = 

1 is the only equation that is by itself. All the others can 

be decomposed into sets of size p. 

 But this would mean that the number of equations 

of the above form is congruent to 1 modulo p, which is 

impossible for |G|p−1, since p divides |G|. ☺ 

 

§4.8. Dihedral Groups 
 The family of cyclic groups contains those groups 

with the simplest possible group structure. A closely 

related family is the family of dihedral groups. 

 

 The dihedral group of order 2n is the group: 

D2n = A, BAn = 1, B2 = 1, BA = A−1B. 

 

 Dihedral groups occur naturally in many different 

guises. D2n is, for example, the group structure of the 

symmetry group of a regular n-sided polygon. The 

symmetry operations consist of the rotation R through 

2/n, and its powers plus the 180° rotations about the n 

axes of symmetry. But if Q denotes any one of these, the 

others can be expressed in the form RkQR−k. 

 If Q denotes the 180° degree rotation about any one 

axis of symmetry (say a vertical axis), any other 180° 

symmetry operation can be achieved by rotating that axis 

until it becomes vertical (by some power Rk), carrying out 

Q about the vertical axis, and then rotating the axis back 
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to its original position (by R−k). Hence it can be expressed 

as RkQR−k. 

Now Rn = 1 (n successive rotations through 2/n); 

         Q2 = 1 (two successive 180° rotations) and 

     QRQ = R−1 (a negative or clockwise rotation can be 

achieved by rotating about the vertical axis first, then 

rotating in the positive direction and finally rotating back 

in the vertical axis – try it!) and so RQ = QR−1. 

 So this symmetry group is: 

R, Q Rn = Q2 = 1, RQ = QR−1, 

that is, it is the dihedral group of order 2n. In particular 

D8 is the symmetry group of a square. 

 

§4.9. Dihedral Arithmetic 
 The dihedral group 

D2n = A, BAn = B2 = 1, BA = A−1B 

has three relations. Let’s examine their implications. 

 

An = 1: This means that any expression involving A’s and 

B’s need not have any string of successive A’s longer than  

n −1, because any block of  n  successive  A’s  is  An 

which, because it’s equal to the identity, can be removed. 

 For example in 

D4 = A, BA4 = B2 = 1, BA = A−1B, 

an element such as A2BA7BA can be simplified to 

A2BA3BA by removing an A4 from the middle. 
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B2 = 1:  This means that it is never necessary to have two 

successive B’s. For example an expression such as 

AB3A2B8A3B can be simplified to ABA5B by using B2 = 

1. In D8 this can be further reduced to ABAB by use of 

the relation A4 = 1. 

 

 Another consequence of B2 = 1 is the fact that B = 

B−1 (just multiply both sides on the left by B−1). This 

means that there’s never any need to have B−1 in any 

expression. 

 

BA = A−1B: It is this third relation that makes dihedral 

groups non-abelian (except for the trivial cases of D4 and 

D2 where A−1 = A). Expressing this relation in words, we 

can say that every time a B passes across an A it inverts 

it, that is, converts it to A−1. 

 

 Consequently if we have an expression involving a 

mixture of A’s and B’s we can move all the A’s up to the 

front and all the B’s down to the back just as we would if 

the commutative law was in force. The difference is that 

the A’s get inverted every time a B crosses over. This is 

the dihedral ‘twist’. 

 

Example 13: In a dihedral group the expression 

ABA3BA2BAB can be written as: 

AA−3BBA2BAB = A−2BBA2BAB 

= A−2A2BAB = BAB = A−1B2 = A−1. 
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Theorem 21: The elements of D2n are: 

1 A A2 A3 … An−1 

B AB A2B A3B … An−1B 

Proof: Because of the relation BA = A−1B we can express 

every element in the form AiBj. But because An = 1 and 

B2 = 1, we may assume that i = 0, 1, 2, ... , n − 1 and j = 0 

or 1. ☺ 

 

 Notice that the first row consists of the cyclic 

subgroup, H, generated by A, and the second row is the 

left coset HB. 

 

Theorem 22: In the dihedral group 

D2n = A, BAn = B2 = 1, BA = A−1B 

the elements of the form AkB all have order 2. 

Proof: (AkB)2 = AkBAkB = AkA−kBB = BB = 1. ☺ 

 

§4.10. Groups of Order 2p 
 We now classify groups of order 2p (where p is 

prime).  We show that all 

such groups are either 

cyclic or dihedral. Since 

the proof is rather lengthy 

we’ve broken the 

argument up into 39 steps 

(with apologies to John 

Buchan and Alfred 

Hitchcock). 
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 Also, to make it easier to see which assumptions 

are in force at any given time, we’ve used a similar 

indenting convention to that advocated when writing 

computer programs. 

 

Theorem 23: If  |G| = 2p for some prime p then G is cyclic 

or dihedral. 

Proof: 

(1) Suppose that |G| = 2p  where p is prime and suppose 

that G is not cyclic. 

(2) Suppose that p is odd. 

 (3) By Lagrange's theorem the order of every 

element is 1, 2, p or 2p. 

 (4) Suppose G contains an element of order 2p. 

  (4) Hence G is cyclic, a contradiction! 

 (5) Since |G| is even, G must contain an element, b, 

of order 2. 

 (6) Suppose that all the elements of G, except 1, 

have order 2. 

  (7) Then G is abelian. 

  (8) Choose a, b  G of order 2 with a  b. 

  (9) Hence H = {1, a, b, ab} is a subgroup of 

G of order 4. 

  (10) Since 4 doesn’t divide 2p we get a 

contradiction. 

 (11) So G must have an element, a, of order p. 

 (12) Let H = a. 

 (13) Since 2 doesn’t divide p, b  H. 

 (14) The right cosets of H in G must be H and bH. 
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 (15) Similarly the left cosets are H and Hb. 

 (16) Since bH and Hb consist of all the elements 

outside H, they must be equal,  ie. Hb = bH. 

 (17) Now ba  bH so ba  Hb. 

 (18) Hence ba = arb for some integer 

                                                             r = 0, 1, ... , p − 1. 

 (19) Hence a = b2a = barb 

 (20)   = baa ... ab 

                                         (where there are r factors of a). 

 (21)                = arar ... ar b2 

                                                             (where there are r factors of ar). 

 (22)    = ar² (since b2 = 1). 

 (23) So ar² = a, that is ar²−1 = a. 

 (24) Hence p divides r2 −1. 

 (25) Since p is prime and r2 − 1 = (r −1)(r + 1), 

                                      pr − 1 or pr + 1. 

 (26) Thus ba = ab or a−1b. 

 (27) Suppose ba = ab. 

  (28) Since G is not cyclic the order of ab 

                                                          must be 1, 2 or p. 

  (29) Suppose ab = 1. 

   (30) Then a = b−1 = b, 

                                         a contradiction. 

  (31) Suppose ab has order 2. 

   (32) Then 1 = (ab)2 = a2b2 = a2, 

                                                         a contradiction. 

  (33) Suppose ab has order p. 

   (34) Then 1 = (ab)p = apbp = bp, 

                                                         a contradiction. 
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 (35) So b−1ab = a−1 and so 

                    G = a, bap = b2 = 1, ba = a−1b = D2p. 

(36) Suppose that p = 2. 

(37)  Then every element of G (except 1) has order 2. 

(38)  Hence G is abelian. 

(39)  Hence G = a, ba2 = b2 = 1, ba = ab 

                         = a, ba2 = b2 = 1, ba = a−1b = D4. ☺ 
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EXERCISES FOR CHAPTER 4 
 

EXERCISE 1: Show that the set of all matrices over ℤ2 

of the form  






1 a b

0 1 c

0 0 1
  is a group of order 8 under matrix 

multiplication. Does it satisfy the commutative law? 

 

EXERCISE 2: Find all the elements of order 4 in the 

above group. 

 

EXERCISE 3: Show that the above group is a dihedral 

group of order 8, that is find an element A of order 4 and 

an element B of order 2 such that BA = A−1B. 

 

EXERCISE 4: Find all the elements of order 4 in 

ℤ2  ℤ8. 

 

EXERCISE 5: How many elements of the group ℂ# of 

non-zero complex numbers under multiplication have 

order 7? How many have order 8? 

 

EXERCISE 6: The following is a partially completed 

group table for a group. Complete it. 

 a b c d 

a  a   

b   c  

c   a  

d  d   
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Which element is the identity? 

 

EXERCISE 7: Find all 4 possible group tables for a 

group G = {1, a, b, c} of order 4. Show that three of them 

are isomorphic (meaning that any one of them can be 

transformed to any other by a suitable relabelling) and the 

fourth is fundamentally different (eg look at the number 

of elements of order 2). 

 

EXERCISE 8: If G is the group whose table is given 

below, show that H = {1, c, d} and K = {1, b} are both 

subgroups of G.  Find all the left and right cosets of each 

subgroup. 

 1 a b c d e 

1 1 a b c d e 

a a 1 c b e d 

b b d 1 e a c 

c c e a d 1 b 

d d b e 1 c a 

e e c d a b 1 

 

EXERCISE 9: 

If  G = a, b  a4 = b3 = 1, ab = ba and H is the cyclic 

subgroup generated by b, find the right and left cosets of 

H in G. 
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EXERCISE 10: In the dihedral group  

D10 = a, b  a5 = b2 = 1, ba = a−1b, simplify 

(i)       a7b3a−2baba3ba2a7b2a; 

(ii)       a13b5a2b−7a2ba. 

 

EXERCISE 11: 

If |G| = 68, find the order of H given the following clues: 

(a)  H  G and |H| < 32. 

(b)  H is non-cyclic. 

 

EXERCISE 12: 

Find |H| given the following clues. 

(a) H is a subgroup of some group of order 100. 

(b) H contains no element of order 2. 

(c) H is not cyclic. 

 

EXERCISE 13: Find |H| given the following clues: 

(a) H is a subgroup of some group G of order 168. 

(b) H is a subgroup of another group K of order 112. 

(c) H is not cyclic or dihedral. 

(d) H contains an element of order 7. 

(e) H has more than two left cosets in K. 

 

EXERCISE 14: If G is a group, the centre (zentrum in 

German) of G is defined to be 

Z(G) = {g  G gx = xg for all x  G}. In other words, 

it’s the set of all elements that commute with everything. 

(a)  Prove that Z(G) is a subgroup of G. 
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(b) Find Z(D2n).  [HINT: You’ll need to consider odd and 

even values of  n  separately.] 

 

EXERCISE 15: Find the numbers of elements of each 

order in the following two groups whose group tables are 

given: 

(a)  

 1 a b c 

1 1 a b c 

a a 1 c b 

b b c 1 a 

c c b a 1 

(b) 

 1 a b c 

1 1 a b c 

a a b c 1 

b b c 1 a 

c c 1 a b 

 

EXERCISE 16: Find the orders of the elements in the 

cyclic group of order 6. 

 

EXERCISE 17: Find the orders of the elements of the 

following three groups: G = ℤ8, H = ℤ#20, K = D8  

Show that no two of these groups are isomorphic. 

 

EXERCISE 18: Which of the above three groups of 

order 8 is cyclic? Which are abelian? 
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EXERCISE 19: Find 9, the cyclic group generated by 

9, in the group ℤ100
#. This consists of all the integers from 

1 to 99 that have no factors in common with 100. The 

operation is multiplication modulo 100. Also determine 

the order of 9 in this group. 

 

EXERCISE 20: Find the order of the following elements 

in the group ℤ100 (consisting of all the integers from 0 to 

99 under addition modulo 100): 2, 9, 6, 15. 

 

EXERCISE 21: 

Find the left and right cosets of {1, B} in the dihedral 

group 

D12 = A, B  A6 = B2 = 1, BA = A−1B. 

 

EXERCISE 22: G is the group whose table is given 

below. Show that H = {1, a, d, f} and K = {1, d} are both 

subgroups of G. Find all the left and right cosets of each 

subgroup. 

 1 a b c d e f g 

1 1 a b c d e f g 

a a d e g f c 1 b 

b b g d 1 c a e f 

c c e 1 d b f g a 

d d f c b 1 g a e 

e e b f a g d c 1 

f f 1 g e a b d c 

g g c a f e 1 b d 
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EXERCISE 23: Find the order of H given the following 

clues: 

(a)  H is a proper subgroup of a group of order 52; 

(b)  H is non-abelian. 

 

EXERCISE 24: Find the order of H given the following 

clues: 

(a) H is a subgroup of some group G of order 100. 

(b) H is a subgroup of another group K of order 40. 

(c) H is not cyclic or dihedral. 

 

EXERCISE 25: Find the order of H given the following 

clues: 

(a) H is a subgroup of some group G of order 20. 

(b) H is non-abelian. 

(c) G contains an element g of order 2 and an element h 

of order 5. 

(d) H contains h but not g. 

 

EXERCISE 26: Complete the following group table and 

find the orders of the elements. 

 1 a b c d e 

1       

a  1 c b  d 

b   d a 1  

c  d e  a b 

d  c  e b a 

e  b a  c 1 
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EXERCISE 27: Find the numbers of elements of each 

order in the cyclic group of order 12. 

 

EXERCISE 28: Find the order of the following elements 

in the group ℤ17
#  (consisting of all the integers from 1 to 

16 under multiplication modulo 17): 2, 6, 9, 16 

 

EXERCISE 29: Find the orders of the elements of the 

following three groups: 

G = the group {1, i, (1 + i)/2, (1 − i)/2} under 

multiplication; 

H = the group of symmetries of a rectangular box; 

K = the group of order 8 whose group table is: 

 1 −1 i −i j −j k −k 

1 1 −1 i −i j −j k −k 

−1 −1 1 −i i −j j −k k 

i i −i −1 1 k −k −j j 

−i −i i 1 −1 −k k j −j 

j j −j −k k −1 1 i −i 

−j −j j k −k 1 −1 −i i 

k k −k j −j −i i −1 1 

−k −k k −j j i −i 1 −1 

 

Show that no two of these groups are isomorphic. 
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SOLUTIONS FOR CHAPTER 4 
 

EXERCISE 1: 

There are 23 = 8 matrices of this form, over ℤ2. 







1 a b

0 1 c

0 0 1
 






1 a b

0  1  c

0  0  1

 = 






1    a + a    b + b + ac

0  1  c + c

0  0  1

  so the set 

is closed under matrix multiplication.  The associative 

law holds, as it always does with matrix multiplication. 

The identity matrix has this form. 

Finally the inverse of 






1 a b

0 1 c

0 0 1
  is 







1    −a    ac − b

0  1  −c

0  0  1

  

which has the required form. 

Since 






1 1 0 

0 1 0 

0 0 1 
 






1 0 0 

0 1 1 

0 0 1 
 = 






1 1 1 

0 1 1 

0 0 1 
  while 







1 0 0 

0 1 1 

0 0 1 
 







1 1 0 

0 1 0 

0 0 1 
 = 






1 1 0 

0 1 1 

0 0 1 
 the group doesn’t satisfy the 

commutative law. 

 

EXERCISE 2: 






1 1 1 

0 1 1 

0 0 1 
 , 






1 1 0 

0 1 1 

0 0 1 
 . 

 

EXERCISE 3: Take A = 






1 1 1 

0 1 1 

0 0 1 
 and B = 







1 1 0 

0 1 0 

0 0 1 
 . 
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EXERCISE 4: 

The elements of  ℤ2  ℤ8 are vectors of the form (x, y) 

where x  ℤ2 and y  ℤ8. 

If 4(x, y) = (0, 0) then 4x = 0 mod 2 and 4y = 0 mod 8. 

This places no restriction on x: x = 0 or 1 but 4y = 0 means 

y = 0, 2, 4 or 6. 

But (0, 0) is the identity and (1, 0), (0, 4) and (1, 4) have 

order 2. 

So the elements of order 4 are thus (0, 2), (0, 6), (1, 2) and 

(1, 6). 

 

EXERCISE 5: 

There are 6 elements of order 7, namely ei/7, …, e6i/7 and 

4 elements of order 8, namely ei/4, e3i/4, e5i/4, e7i/4. 

 

EXERCISE 6: 

Since bc = c the element b is the identity. 

 a b c d 

a  a   

b a b c d 

c  c a  

d  d   

Now  dc  cannot be any of a, c or d because that would 

result in a repetition in either the row or the column 

corresponding to d.  So dc must be b.  In a similar way 

we can complete the table: 
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 a b c d 

a b a d c 

b a b c d 

c d c a b 

d c d b a 

 

EXERCISE 7: Filling out the entries for the identity we 

get: 

 1 a b c 

1 1 a b c 

a a    

b b    

c c    

Now ab = 1 or c. 

 

Case I: ab = 1:  We can now complete the group table: 

 1 a b c 

1 1 a b c 

a a c 1 b 

b b 1 c a 

c c b a 1 

 

Case II: ab = c:  The group table is thus: 

 1 a b c 

1 1 a b c 

a a  c  

b b    

c c    

Now bc = 1 or a. 
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Case IIA: bc = 1:  The group table is thus: 

 1 a b c 

1 1 a b c 

a a  c  

b b c a 1 

c c  1  

 

If a2 = b then ac = 1, a contradiction.  Hence a2 = 1 and 

so the group table is: 

 1 a b c 

1 1 a b c 

a a 1 c b 

b b c a 1 

c c b 1 a 

 

Case IIB: bc = a:  The group table is: 

 1 a b c 

1 1 a b c 

a a  c  

b b c 1 a 

c c  a  

This can be completed in two possible ways: 

 1 a b c   1 a b c 

1 1 a b c  1 1 a b c 

a a 1 c b  a a b c 1 

b b c 1 a  b b c 1 a 

c c b a 1  c c 1 a b 
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Of these four possibilities the ones that arise in Cases I 

and IIA are isomorphic to the second possibility under 

Case IIB. They therefore represent the same group with 

different notation. This group has just one element of 

order 2. The remaining possibility (the first under Case 

IIB) is essentially different in that it has 3 elements of 

order 2. So there are two groups of order 4. One is C4 

(cyclic) and the other is D4 = V4 (dihedral). 

 

EXERCISE 8: 

The fact that H and K are subgroups of G can be most 

easily seen by extracting their group tables from the main 

table: 

H 1 c d 

1 1 c d 

c c d 1 

d d 1 c 

 

K 1 b 

1 1 b 

b b 1 

 

Since every entry in each table belongs to the subset in 

each case each subset is closed under multiplication. 

Clearly each contains the identity and, since 1 appears in 

each row and column, every element has an inverse within 

the respective subset. 

 

The left cosets of H in G are: 
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  H = {1, c, d} and 

aH = (a1, ac, ad} = {a, b, e}. 

The right cosets of H in G are: 

            H = {1, c, d} and 

          Ha = {1a, ca, da} = {a, e, b}. 

 

NOTE that in this example the left and right cosets are 

the same, even though the group is non-abelian. 

 

The left cosets of K in G are: 

  K = {1, b}, aK = {a1, ab} = {a, c}  and 

dK = {d1, db} = {d, e}. 

 

NOTE that we didn’t waste our time with bK or cK  

because those elements were already included and we 

would have simply repeated the first two cosets. 

 For example bK = {b1, bb} = {b, 1} = {1, b}. So 

always use as a representative for a new coset, an element 

that hasn’t yet been included. 

The right cosets of K in G are: 

  K = {1, b},  Ka = {1a, ba} = {a, d}  and 

Kc = {1c, bc} = {c, e} 

NOTE that in this case the left cosets and the right cosets 

give two different subdivisions of the group. 
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EXERCISE 9: 

The elements are: 1,    a,      a2,     a3, 

                              b,   ab,   a2b,   a3b, 

                            b2, ab2, a2b2, a3b2. 

The left cosets are H = {1, b, b2} 

                           aH = {a, ab, ab2} 

                          a2H = {a2, a2b, a2b2} 

                    and a3H = {a3, a3b, a3b2} 

Of course, since this group is abelian, the left cosets are 

the same as the right cosets. 

 

EXERCISE 10: 

(i) Using b2 = 1 this becomes a7ba−2baba3ba2a7a, and 

combining powers of a we get 

a7ba−2baba3ba10.  Using a5 = 1 we get a2ba3baba3b. Now 

we need to make use of the relation ba = a−1b .  Moving a 

b past an a, inverts it. Moving the second last b to the back 

we get a2ba3baa−3b2 = a2ba3ba3. Moving the next b down 

gives a2ba3a−3b = a2bb = a2. 

(ii) a13b5a2b−7a2ba = a3ba2ba2ba = a3ba2ba2a−1b =  

a3ba2bab = a3ba2a−1 = a3ba = a2b . 

 

EXERCISE 11: 

By Lagrange's Theorem |H| divides 68. Since |H| < 32, |H| 

= 1, 2, 4 or 17. Since H is not cyclic we can eliminate 1, 

2 and 17. Hence |H| = 4. 
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EXERCISE 12: 

By Lagrange's Theorem |H| divides 100. H being non-

cyclic rules out 1 and the primes 2 and 5, leaving 4, 5, 10, 

20, 25, 50 and 100. Now groups of even order must 

contain an element of order 2. Since H doesn’t, it must 

have odd order, leaving 25 as the only possibility. 

 

EXERCISE 13: 

By Lagrange’s Theorem, |H| divides both 168 = 837 

and 112 = 167 and therefore must divide their greatest 

common divisor, which is 56. Since H contains an 

element of order 7, 

|H| must be divisible by 7. This limits the possibilities to 

7, 14, 28 and 56. Now since H is neither cyclic nor 

dihedral, |H| can’t be prime or twice a prime [groups of 

order p are cyclic; groups of order 2p are cyclic or 

dihedral]. This narrows down the possibilities to 28 and 

56. Now if |H| was 56 there would be exactly 2 left cosets 

in K which has order 112. By clue (e) this isn’t so, and 

hence 56 is ruled out. Therefore |H| must be 28. 

 

EXERCISE 14: 

(a) This is easily verified. Note that gx = xg implies that 

xg−1 = g−1x . 

(b) D2n = a, ban =b2 =1, ba = a−1b. If ar  Z(G) then arb 

= bar = a−rb, so a2r = 1 which means that n2r. 

If n is odd this means nr and so ar = 1. 

If n is even ar is 1 or an/2. 
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Similarly one can check that no element of the form arb 

commutes with a. So Z(D2n) = {1} if n is odd and 

{1, an/2} if  n  is even. 

 

EXERCISE 15: 

(a) has the identity plus 3 elements of order 2. 

(b) has the identity, one element of order 2 (viz. b) and 2 

elements of order 4. 

[The fact that they differ in their structure in this way 

means that they’re non-isomorphic, or essentially 

different. These two tables reflect the only two possible 

group structures for a group of order 4.] 

 

EXERCISE 16: 

The cyclic group of order 6 has the form: 

{1, g, g2, g3, g4, g5} where g6 = 1 

Clearly g has order 6. 

(g2)2 = g4, (g2)3 = g6 = 1 and so g2 has order 3. 

(g3)2 = 1 and so g3 has order 2. 

(g4)2 = g8 = g2, (g4)3 = g12 = 1 and so g4 has order 3; 

The powers of g5 are g5, g10 = g4, g15 = g3, g20 = g2, g25 = 

g. 

Finally (g5)6 = g30 = 1 and so g5 has order 6. 

The cyclic group of order 6 thus has: 

1 element of order 1; 

1 element of order 2; 

2 elements of order 3; 

2 elements of order 6. 



 208 

NOTE: orders 4 and 5 are missed out. Can you guess 

why? 

 

EXERCISE 17: 

G:   1, 3, 5, 7 have order 8 

       2, 6 have order 4 

       4 has order 2 

       0 has order 1 

H:   3, 7, 13 and 17 have order 4 

       9, 11 and 19 have order 2 

       1 has order 1 

K:   The dihedral group A, BA4 = B2 = 1, BA = A−1B 

has elements: 1, A, A2, A3, B, AB, A2B, A3B. Of these: 

A, A3 have order 4.  A2, B, AB, A2B, A3B have order 2 

and 1 has order 1. 

 

Listing the numbers of the elements of orders 1, 2, 4 and 

8 respectively, as vectors we have: 

G:  (1, 1, 2, 4);   H:  (1, 3, 4, 0);   K: (1, 5, 2, 0). 

The differences show that these three groups are mutually 

non-isomorphic. There are in fact 5 distinct groups of 

order 8, the above three plus two others. 

 

EXERCISE 18: 

G is cyclic (and hence abelian) because it contains an 

element of order 8; H is abelian but not cyclic; K is non-

abelian (and hence not cyclic). 

NOTE: There’s always only one cyclic group of any 

given order. In other words, all cyclic groups of order  n  
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are isomorphic. A representative example of the cyclic 

group of order n is ℤn = {0, 1, ... n − 1}, of integers modulo 

n under addition. 

 

EXERCISE 19: 

The powers of 9 are: 

91 = 9, 92 = 81, 93 = 729 = 29 mod 100 and so on. Rather 

than accumulate the higher and higher powers we can 

simply multiply by 9 at each stage to get the next: 

94 = 9  29 = 261 = 61 

Then comes 49, 41, 69, 21, 89 and finally 1. 

So 9 = {1, 9, 81, 29, 61, 49, 41, 69, 21, 89}. There are 

10 elements in this cyclic subgroup and so 9 has order 10 

under multiplication modulo 100. 

 

EXERCISE 20: 

2: Remember that the operation is addition, so we need to 

keep adding the generator to itself, that is, taking higher 

and higher multiples, not powers. We want the smallest 

positive integer n  such that  2n = 0 mod 100, or in other 

words, such that  2n  is a multiple of 100. The answer is 

clearly 50. 

9:  We want 100 to divide  9n.  Since 100 has no factors 

in common with 9, we’d need  n itself to be a multiple of 

100. The smallest positive such n is thus 100. So 9 has 

order 100 in this group. 

6:  We need  6n  to be a multiple of 100. Since 2 divides 

both 6 and 100 we need 50 to divide 3n.  But since 50 has 
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no factor in common with 3, we’d need 50 to divide n. So 

6 has order 50. 

15: 15n = 0 mod 100 means that 3n = 0 mod 20. Since 3 

is coprime with 20, we need  n = 0 mod 20, so 15 has order 

20. 

 

EXERCISE 21: 

Left cosets: 

1 

B 

A   

AB 

A2 

A2B 

A3 

A3B 

A4 

A4B 

A5 

A5B 

Right cosets 

1 

B 

A   

BA 

A2 

BA2 

A3 

BA3 

A4 

BA4 

A5 

BA5 

i.e. 

1 

B 

A 

A5B 

A2 

A4B 

A3 

A3B 

A4 

A2B 

A5 

AB 

 

 

EXERCISE 22: 

H and K contain 1 and are closed under multiplication and 

inverse as these tables show: 

 

H 1 a d f 

1 1 a d f 

a a d f 1 

d d f 1 a 

f f 1 a d 
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K 1 d 

1 1 a 

d d 1 

 

The left and right cosets of H are 

1   a   d   f b   c   e  g 

The left and right cosets of K are 

1   d a   f b   c e   g 

 

EXERCISE 23: 

By (a) |H| = 1, 2, 4, 13, 26 and by (b) |H| = 26. 

 

EXERCISE 24: 

By (a) |H| divides 100. By (b) |H| divides 40. Hence |H| 

divides 20 and so |H| = 1, 2, 4, 10 or 20. By (c) |H| = 20. 

 

EXERCISE 25: 

By (a) |H| divides 20. By (c), (d) |H| is divisible by 5. 

Hence |H| = 5, 10 or 20. 

By (b) |H|  5. By (d) |H|  20. Hence |H| = 10. 

 

EXERCISE 26: 

 1 a b c d e 

1 1 a b c d e 

a a 1 c b e d 

b b e d a 1 c 

c c d e 1 a b 

d d c 1 e b a 

e e b a d c 1 
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EXERCISE 27: 

If G = A | A12 = 1  there are 4 elements of order 12 (A, 

A5, A7, A11), 2 elements of order 6 

(A2, A10), 2 elements of order 4 (A3, A9), 2 elements of 

order 3 (A4, A8), 1 element of order 2 (A6) plus the identity 

of order 1. 

 

EXERCISE 28: 

The group has order 16 so the possible orders of the 

elements are powers of 2. 

2: 22 = 4, 24 = 16 = −1, 28 = 1 so 2 has order 8. 

6: 62 = 2 so 6 has order 8. 

9: 92 = 13 = − 4, 92 = 16 = −1, 94 = 1 so 9 has order 4. 

15: 162 = (−1)2 = 1 so 16 has order 2. 

  

EXERCISE 29: 

G is the group of 8th roots of 1. 

The four elements (1 + i)/2, (1 − i)/2 have order 8, 

i have order 4, −1 has order 2 and 1 has order 1. 

H = A, B, C | A2 = B2 = C2 = 1, BA = AB, AC = CA, CB 

= BC. It has 7 elements of order 2 plus the identity. 

K: has 6 elements of order 4 (i, j, k), only 1 element 

of order 2 (−1), plus the identity. 

Since these three groups differ in the numbers of elements 

of each order no two of them can be isomorphic. 

 


