4. FIRST STEPS IN THE
THEORY

84.1. A Catalogue of All Groups:

Impossible Dream

The fundamental problem of group theory is to
systematically explore the landscape and to chart what
lies out there. We’d like
to have a catalogue of
all groups, or perhaps
just all finite groups: a
catalogue that would |
provide one specimen
of each group so that
we’d be able to say that
every group, or every
finite group, IS
isomorphic to exactly one of the specimens in our
catalogue. In particular we’d know exactly how many
groups there are of any given order.

This is an impossible dream, but not simply
because there are infinitely many finite groups. After all
there are infinitely many finite-dimensional vector spaces
over a given field yet we can describe them all in the
single statement that every finite-dimensional vector
space over a field F is isomorphic to the space of n-tuples
(X1, X2, ... , Xn) Over F for some n. This is just a corollary
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of the theorem that every finite-dimensional vector space
has a basis. In other words there’s exactly one vector
space over F (up to isomorphism) for each dimension.

Structure theorems exist in various parts of
mathematics. We know all the finite fields. In topology
the compact surfaces are all known. Within group theory
itself we have a number of classification theorems. For
example we know all the finite abelian groups, via the
Fundamental Theorem of Abelian Groups that we’ll
prove in a later chapter.

The most celebrated example is the classification
of all finite ‘simple’ groups. Don’t worry now what a
simple group is. In a certain sense they’re the building
blocks of all finite groups but the term ‘simple’ is
deceptive.. They’re not the most elementary of groups
but their simplicity refers to the fact that they can’t be
pulled apart, in a certain way, into smaller groups.
They’re the atoms of the universe of finite groups.

Now this celebrated theorem is the culmination of
virtually a century’s work by many thousands of group
theorists and its proof is scattered over numerous research
journals in the literature. It has never been assembled in
one place because it’s estimated that it would occupy
about 20,000 pages and because of this it has even made
it to the Guinness Book of Records as the theorem with
the longest proof!

The goal of this chapter is to develop enough of the
theory to enable us to prove a couple of classification
theorems; nothing as ambitious as the one we were just

170



talking about — just a couple of nice, gentle theorems.
Together they describe, for each prime p, the groups of
order p and of order 2p. There aren’t very many such
groups for a given prime. In fact there’s only one group
of order p and just two of order 2p. So contrary to what
you might expect the number of different groups doesn’t
grow steadily with the group order. The groups of order
32 have been catalogued and there are over 50 of them.
But there’s only one group of order 31 because 31 is
prime and there are just two groups of order 34.

84.2. Additive and Multiplicative

Notation
Until now we’ve written the combination of a and
b in an abstract group as a = b. But, unless there’s danger

of confusion, it’s more usual to write the binary operation
as if it was addition or multiplication.

If we’re proving theorems about abstract groups in
general, where the group could be non-abelian, we use
multiplicative notation. If the groups we’re considering
are all abelian we normally use additive notation. The
reason for this distinction is that we’re used to
multiplication being non-commutative (for example
matrices and permutations), but in all the systems we’ve
ever encountered, addition is commutative. It’s very
dangerous therefore to use additive notation in a non-
commutative group.
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GENERAL | MULTIPLICATIVE | ADDITIVE
NOTATION NOTATION NOTATION
axb ab a+b
axax*..*a a" na

e 1 0
inverse of a at —a

Just remember that even though we use
multiplicative or additive notation the operation might be
quite different to ordinary multiplication or addition of
numbers.

84.3. Basic Properties of Groups

Having motivated you in terms of group theory,
and giving a huge number of examples of many different
types | now intend to make a fresh beginning. Indeed this
IS where most books on group theory begin. | will restate
the definition and slowly build up the theory.

So, recall the definition of a group as a set with one
associative binary operation for which there is an identity
and where each element has an inverse. Notice that there
is nothing in this definition that precludes a group from
having multiple identities or an element having more than
one inverse. But in fact a group can only have one
identity, and inverses are unique. Because of this it makes
sense to adopt a symbol for the identity (1 in
multiplicative notation and 0 in additive notation).
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Moreover the notation a™* or —a would be misleading if
there were multiple inverses.

Theorem 1: The identity element of a group is unique.
Proof: Suppose e, f are identities for a group G.

Then e = e f (since f is an identity) = f (since e is an
identity).©%

Theorem 2: Each element of a group has only one
inverse.

Proof: Suppose b, ¢ are both inverses of the element a
inagroup G.

Thenb=Dbl=b (ac)=(ba)c=1c=c. ©Y%

NOTE: It is the associative law that ensures that inverses
are unique. Algebraic systems that are not associative can
indeed have multiple inverses. For example, the following
system is closed and has an identity. Moreover every
element has an inverse. In fact some elements have two
inverses. But it isn’t a group because it’s not associative.

1 ab
1{1]a|b
ala|l|1l
b|{b[1]1

Note that (aa)b = 1b = b while a(ab) = al = a.
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Theorem 3: (Cancellation Law):

If ax =ay in a group then x = .

Proof: Suppose ax = ay. Then a™* (ax) =a (ay).
Hence (a™a)x = (a?a)y. Thus 1x=1yandsox=y. ©%

Notice that all the group axioms (except the Closure Law)
are needed to prove this.

Similarly one can prove that xa =ya implies that
X =Y. Thus cancellation on the left, or on the right, is
possible in a group. A consequence of the cancellation
law is that:

Every element appears exactly once and only once in
each row and column of the group table.

You should take careful note of the fact that you
can’t cancel on the left-hand end of one side of the
equation and on the right-hand end of the other. In other
words ax = xb does not imply that a =b.

84.4. Subgroups
Recall the definition of subgroup. If G is a group and H is
a subset of G then H is a subgroup if

(1) xy eHforall x,y e H

2)1eH

(3)x*t e Hforall x e H.
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A subgroup H is a group in its own right. Every group is
a subgroup of itself. All other subgroups are called
proper subgroups. The trivial subgroup, 1 = {1} is a
subgroup of any group.

Notation: H £ G means ‘H is a subgroup of G’ and H <
G means ‘H is a proper subgroup of G’, that is, H is a
subgroup but is not G itself.

Example 1: 27Z (the group of even integers) is a proper
subgroup of Z (under +).

Theorem 4: For all g € G, (g) is a subgroup of G.
Proof: Forallr,s e Z*, g"g° = g™ e (g); 1=g° € (Q)
and forallr, (gN?=9g" € (g). ©Y%

84.5. Powers

If g is an element of a group, we define positive
integer powers of g inductively as follows:

9°=1;

g™t =g"gforalln>0.
We define negative powers by g™ = (g~)" for all negative
integers —n.

Theorem 5: For all natural numbers m, n and all
elements a, b inagroup G:

(1) ama" = am+n; (2) (am)n - amn;

(3) (b~tab)"=bta"; (3)if G is abelian, (ab)" = a"b".
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Proof: Although these seem obvious enough (and indeed
they are obvious if m and n are positive, just by counting
factors) the cases where one or both are negative require
special attention.
(1) This is obvious if both m, n are positive or zero.
Suppose m is positive and n is negative, say n = —r
where r is positive. If m > r then on the left hand side
there will be r cancelling pairs of aa™! leaving m—r =
m + n factors. If m <r there will be only m such pairs
leaving r — m factors of a™t. The result is therefore
a—(r-m) = gm-r = gmn,

We’ve thus proved the result for all n where m >
0. If m is negative, say m =-s, then putting b =a* the
left hand side is b°b™. By the earlier case this is b*™" =
an—s e am+n.
(2) Again this is obvious if m, n are both positive. The
other cases are left as an exercise.
(3) If n is positive we simply count the number of factors
on each side. Because the group is assumed to be abelian
the factors may be rearranged so all the a's can be
brought to the front. If n is zero, LHS=RHS=1.1f n
is negative we put b =a and use the positive case.
(4) If n is positive, (bab)"=b(bb ) a(bb™)... (bb-Hab
(n factors) = btaa ... ab

=bta"b.

If n =0, LHS = RHS = 1. If n is negative we use the
positive case on b-ich where ¢ is definedtobe a?. ©%
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Theorem 6: Inagroup G, (ab)™*=b"ta™.

Proof: (b~*a)(ab) = b(aa) b = b b = 1 and similarly
(ab)(b*a?t)=1. ©%

Remember that the inverse of a product is the product of
the inverses in reverse order.

The cyclic subgroup generated by an element g is the set
of all powers of g (including 1 as g° and negative powers).
It’s denoted by ( g ).

Definition: The order of an element g of a group is the
smallest positive integer n such that g" = 1 (if such an n
exists). In additive notation this becomes ng = 0.

The identity element of any group is the only element of
order 1.

The order of g is denoted by |g|. If there’s no such
positive n, we say that g has infinite order. For example
the order of i in the group of non-zero complex numbers
under multiplication is 4 since i* = 1 while no lower
positive power is equal to 1. The number 2 has infinite
order.

Theorem 7: The order of an element g € G is at most |G|.
Proof: Letn =|G|. The elements 1, g, g% ... g™, ¢" can’t
be distinct (there are n+1 of them in a group of order n).
Hence there must be some repetition: g" = g° for some r, s
with0<r<s<n Thusg'=1andsince0<r<s<n,
we must have |[g| <n. ©%
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Later, we’ll prove that, in fact, the order of an
element of G divides the order of G.

Theorem 8: Groups of even order must contain an
element of order 2.

Proof: Suppose |G| is even. Now the elements of G that
differ from their inverses must come in pairs {x, x'}.
Since |G| is even, the remaining elements, those for which
x = x7%, must also be even in number. But x = x! is
equivalent to x? = 1 and so these are the elements of order
2, together with the identity. Leaving out the identity,
there must be an odd number of elements of order 2 and

so the number of elements of order 2 must be at least 1.
oY

Theorem 9: If all of the elements of G (except 1) have
order 2, then G must be abelian.

Proof: Letx,y € G. Then (xy)? = 1. But also x?y?> = 1 and
SO XYXY = XXYY.

Multiplying by x! on the left and by y* on the right of
each side of this equation we conclude that yx = xy. Since
this holds for all x, y € G it follows that G is abelian. © %

84.6. Cyclic Groups
A group G is cyclic if it can be generated by a single
element, thatis if G =( g ) for some g € G.
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Example 2: The set of n-th roots of unity:
{zeC|Z"=1}
Is a group under multiplication. It is a cyclic group
because it can be generated by e2®, This is because every
n-th root of 1 has the form e?#/" = (g27M)k In particular
the group of 4-th roots of unity is
{1,i,-1,-i}

which is generated by i.

Example 3: The group of symmetries of a parallelogram
Is {I, R} where R is a 180° rotation about its centre. This
group is a cyclic group generated by R.

Example 4: The group (Z, +) of integers under addition
Is cyclic because it can be generated by the integer 1.
Remember that we’re using additive notation here so
instead of saying that every integer is an integer power of
1 (which is not the case), we should be saying that every
integer is an integer multiple of 1 (which it is). Note that
—1 also generates this group, but 1 are the only
generators.

Theorem 10: Cyclic groups are abelian.

Proof: Two typical elements in the cyclic group (g) are g"
and g°. Now g'g® = g™ = g°g". So every pair of elements
commute and hence the cyclic group is abelian. © %
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Theorem 11: A finite group of order n is cyclic if and
only if it contains an element of order n.
Proof: Suppose that |G| = n and G has an element g of
order n. Then {g), the cyclic subgroup generated by g, has
order n (that is there are n distinct powers of g). Thus there
are no other elements in G. They’re all powers of g and
so g is agenerator for G and hence G is cyclic.
Conversely suppose that G is a cyclic group of

order n. Then, if g is a generator, g must have order n.
oY

Example 5: The group given by the following group table
isn’t cyclic since it has no element of order 4.

OO w>

O0|m>|>
O|0> m|w
@ > 000
pdluliellwiie;

§4.7. Cosets and Lagrange’s Theorem
Let H < G. Define a relation = by defining x=vy if
x =yh for some h € H.

Theorem 12: = is an equivalence relation.

Proof: Reflexive Leta € G. Then a = al.

Sincel e H,a=a.

Symmetric Suppose a = b. Then a = bh for some h € H.
Hence ah™ = b.
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Sinceh™ e H,b=a.

Transitive Suppose a=b and b =c. Then a = bh for some
h € Hand b = ck for some k € H.

Thus a = (ck)h = ¢(kh). Sincekh e H,a=c. ©%
NOTE: Each of the three properties of an equivalence
relation comes from one of the three closure properties of
a subgroup.

The equivalence classes under = are called the right
cosets of H in G.

Notation: gH denotes the right coset containing g.
NOTE: Left cosets are defined similarly.

Note also that some books define left and right cosets in
the opposite manner.

Example 6: G = R*, H = {1} under the operation of
multiplication. The cosets are all of the form { x}.

Example 7: G = C* the group of non-zero complex
numbers under multiplication, and let H be the subgroup
of all complex numbers with modulus 1. The right (or left)
cosets of H in G are all the circles with centre 0.

Example 8: Suppose G = Sz and H ={l, (12)}.

The left and right cosets of H in G are:

HI ={LI, A1} =4I, (12)} H={L.1,1(12)} ={l, (12)}
H(13) = {1(13), (12)(13)} = {(13), (123)}

(13)H = {(13)I, (13)(12)} = {(13), (132)}

H(23) = {1(23), (12)(23)} = {(23), (132)}
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(23)H = {(23)1, (23)(12)} = {(23), (123)}.

Notice that in this case, left and right cosets are different.

Example 9: G=S3, H={l, (123), (132)}. Here the left
and right cosets give the same decomposition of G. These
two (left/right) cosets are H itself and {(12), (13), (23)}.

Theorem 13:

(1) The subgroup H is itself one of the cosets of H in G.
(2) Two elements a, b belong to the same right coset (of
Hin G) if and only if b™ta € H.

Proof:

(1) H=1H.

(2) a, b belong to the same right coset if and only if a=
b, that is, if and only if a = bh for some h € H, that is, if
and only if b~'a = h for some h € H, or more simply,
blaeH ©%

Equivalence classes in general can be of different sizes,
but cosets of a given subgroup must have the same size.

Theorem 14: If H < G, every coset of H in G has |H]
elements.

Proof: There’s a natural 1-1 correspondence between any
coset aH and H itself viz. ah <> h. Hence the number of
elements in each is the same. ©%
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Theorem 15: (LAGRANGE) The order of a subgroup of
a finite group divides the order of the group.

Proof: Suppose there are m cosets of H in G. Since G is
the disjoint union of them and each coset has |H| elements,
it follows that |G| = m. [H| and so [H| divides |G|. ©1%

This is a very powerful result. It shows that the number of
elements in a group greatly affects its structure.

Example 10: If |G| = 14, the only possible orders for a
subgroup are 1, 2, 7 and 14.

Theorem 16: Groups of prime order are cyclic.

Proof: Suppose |G| = p where p is prime.

Since p > 2 we may choose g € G such that g = 1.

Let H=(g).

Let [H =n. Now n|p andn>1son=p. Hence G =H
and so G is cyclic. ©%

Since the order of an element is the order of the cyclic
subgroup it generates, we have:

Theorem 17: The order of an element of a finite group
divides the order of the group. ©

Lagrange’s Theorem is a powerful one. But its

converse does not hold in general. Just because a number
divides the group order doesn’t mean there has to be a
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subgroup of that order. For example A4 has order 12, but
no subgroup of order 6.

However if a prime power divides |G| there is at
least one subgroup of that order. This is part of what is
known as the Sylow Theorems. Here we prove the special
case where the divisor is just a prime.

Theorem 18 (CAUCHY): If p is a prime divisor of |G|
there is an element of G of order p.

Proof: Consider all equations of the form gig, ... gp =1
where the g; € G.

There are |G’ such equations, because the first p — 1
factors can be chosen arbitrarily and the last one has to be
the inverse of their product.

Now if 9102 ... gp = 1 is one of these equations then so is
0203 ... gpd1 = 1. We just multiply both sides on the left
by g:! and on the right by g;. In fact we can bring any
number of the factors from the left-hand side and bring
them to the right. Any cyclic rearrangement of the factors
will also give one of these equations.

You might think that the set of these equations can
be decomposed into sets of size p in this way. But what
if every factor is equal? For example the cyclic
rearrangements of the equation 1.1. ... 1 =1 will give just
one equation not p distinct equations.

While ever two of the factors are different the
cyclic rearrangements will be distinct. Notice that it is
important for p to be prime for this to work because if p =
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6 then ababab = 1 would only have two distinct cyclic
arrangements.

Now if G has no element of order pthen 1.1 ... 1 =
1 is the only equation that is by itself. All the others can
be decomposed into sets of size p.

But this would mean that the number of equations
of the above form is congruent to 1 modulo p, which is
impossible for |G, since p divides |G|. ©%

84.8. Dihedral Groups

The family of cyclic groups contains those groups
with the simplest possible group structure. A closely
related family is the family of dihedral groups.

The dihedral group of order 2n is the group:
D= (A, B|A"=1,B2=1, BA= AB).

Dihedral groups occur naturally in many different
guises. Dy, is, for example, the group structure of the
symmetry group of a regular n-sided polygon. The
symmetry operations consist of the rotation R through
27t/n, and its powers plus the 180° rotations about the n
axes of symmetry. But if Q denotes any one of these, the
others can be expressed in the form RKQR™.

If Q denotes the 180° degree rotation about any one
axis of symmetry (say a vertical axis), any other 180°
symmetry operation can be achieved by rotating that axis
until it becomes vertical (by some power R¥), carrying out
Q about the vertical axis, and then rotating the axis back
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to its original position (by R™). Hence it can be expressed
as RKQR™,
Now R" =1 (n successive rotations through 2r/n);

Q2 =1 (two successive 180° rotations) and

QRQ = R (a negative or clockwise rotation can be

achieved by rotating about the vertical axis first, then
rotating in the positive direction and finally rotating back
in the vertical axis — try it!) and so RQ = QR

So this symmetry group is:

(R,Q |IR"=Q?=1,RQ=QR™),

that is, it is the dihedral group of order 2n. In particular
Ds is the symmetry group of a square.

§4.9. Dihedral Arithmetic
The dihedral group
Da=(A, B |An=B2=1 BA= AB)
has three relations. Let’s examine their implications.

A" =1: This means that any expression involving A’s and
B’s need not have any string of successive A’s longer than
n —1, because any block of n successive A’s is A"
which, because it’s equal to the identity, can be removed.
For example in

D,=(A, B|A*=B2=1, BA = A'B),
an element such as A?2BA’BA can be simplified to
A?BA3BA by removing an A* from the middle.
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B2 =1: This means that it is never necessary to have two
successive B’s. For example an expression such as
AB3AZBBAB can be simplified to ABA®B by using B? =
1. In Dg this can be further reduced to ABAB by use of
the relation A% =1,

Another consequence of B? = 1 is the fact that B =
B! (just multiply both sides on the left by B™). This
means that there’s never any need to have B~ in any
expression.

BA = AB: It is this third relation that makes dihedral
groups non-abelian (except for the trivial cases of D4 and
D, where At = A). Expressing this relation in words, we
can say that every time a B passes across an A it inverts
it, that is, converts it to A,

Consequently if we have an expression involving a
mixture of A’s and B’s we can move all the A’s up to the
front and all the B’s down to the back just as we would if
the commutative law was in force. The difference is that
the A’s get inverted every time a B crosses over. This is
the dihedral ‘twist’.

Example 13: In a dihedral group the expression
ABA3BAZBAB can be written as:
AA“BBA’BAB = A°BBA’BAB
= A2A°BAB=BAB=A"'B2=A".
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Theorem 21: The elements of D, are:
1A [A2 |AS | .. |A
B|AB|A’B | A’B|... | A™!B
Proof: Because of the relation BA A~1B we can express
every element in the form A'Bl. But because A" = 1 and
B2=1, we may assume thati=0,1,2,..,n—1andj=0
orl. ©%

Notice that the first row consists of the cyclic
subgroup, H, generated by A, and the second row is the
left coset HB.

Theorem 22: In the dihedral group

Do =(A, B|A"=B2=1, BA=A"'B)
the elements of the form A*B all have order 2.
Proof: (A*B)? = A\BA'B = AXA*BB=BB =1. ©%

84.10. Groups of Order 2p

We now classify groups of order 2p (where p is
prime). We show that all ‘

such groups are either
cyclic or dihedral. Since
the proof is rather lengthy
we’ve broken the
argument up into 39 steps
(with apologies to John
Buchan and  Alfred
Hitchcock).
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Also, to make it easier to see which assumptions
are in force at any given time, we’ve used a similar
indenting convention to that advocated when writing
computer programs.

Theorem 23: If |G| = 2p for some prime p then G is cyclic
or dihedral.
Proof:
(1) Suppose that |G| = 2p where p is prime and suppose
that G is not cyclic.
(2) Suppose that p is odd.
(3) By Lagrange's theorem the order of every
elementis 1, 2, p or 2p.
(4) Suppose G contains an element of order 2p.
(4) Hence G is cyclic, a contradiction!
(5) Since |G| is even, G must contain an element, b,
of order 2.
(6) Suppose that all the elements of G, except 1,
have order 2.
(7) Then G is abelian.
(8) Choose a, b € G of order 2 with a = b.
(9) Hence H = {1, a, b, ab} is a subgroup of
G of order 4.
(10) Since 4 doesn’t divide 2p we get a
contradiction.
(11) So G must have an element, a, of order p.
(12) Let H = (a).
(13) Since 2 doesn’t divide p, b ¢ H.
(14) The right cosets of H in G must be H and bH.
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(15) Similarly the left cosets are H and Hb.

(16) Since bH and Hb consist of all the elements
outside H, they must be equal, ie. Hb = bH.

(17) Now ba € bH so ba € Hb.

(18) Hence ba = a'b for some integer

r=0,1,..,p-1
(19) Hence a = b%a = ba'b
(20) =baa...ab
(where there are r factors of a).
(21) =aa"...a"b?
(where there are r factors of a").
(22) = al” (since b? = 1).

(23) So al” = a, that is a1 = a.
(24) Hence p divides r2-1.
(25) Since p is prime and r? — 1 = (r -1)(r + 1),
p|r—1orp|r+1.
(26) Thus ba = ab or a~!b.
(27) Suppose ba = ab.
(28) Since G is not cyclic the order of ab
must be 1, 2 or p.
(29) Suppose ab = 1.
(30) Thena=bt=h,
a contradiction.
(31) Suppose ab has order 2.
(32) Then 1 = (ab)? = a%b? = a2,
a contradiction.
(33) Suppose ab has order p.
(34) Then 1 = (ab)? = aPbP = bP,
a contradiction.
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(35) So b*ab =atand so
G=(a,blaP=b?=1,ba=alb)= Dap.
(36) Suppose that p = 2.
(37) Then every element of G (except 1) has order 2.
(38) Hence G is abelian.
(39) Hence G =(a, b|a?=b2=1, ba = ah)
=(a,b|a?=b2=1, ba=ah) =D, OF
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EXERCISES FOR CHAPTER 4

EXERCISE 1: Show that the set of all matrices over Z,
lab

of the form (0 1 t]:j Is a group of order 8 under matrix
00
multiplication. Does it satisfy the commutative law?

EXERCISE 2: Find all the elements of order 4 in the
above group.

EXERCISE 3: Show that the above group is a dihedral
group of order 8, that is find an element A of order 4 and
an element B of order 2 such that BA = A™'B.

EXERCISE 4: Find all the elements of order 4 in
Zo D Zsg.

EXERCISE 5: How many elements of the group C* of
non-zero complex numbers under multiplication have
order 7? How many have order 8?

EXERCISE 6: The following is a partially completed
group table for a group. Complete it.

a b C d
a

o o0 T
o
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Which element is the identity?

EXERCISE 7: Find all 4 possible group tables for a
group G ={1, a, b, c} of order 4. Show that three of them
are isomorphic (meaning that any one of them can be
transformed to any other by a suitable relabelling) and the
fourth is fundamentally different (eg look at the number
of elements of order 2).

EXERCISE 8: If G is the group whose table is given
below, show that H = {1, ¢, d} and K = {1, b} are both
subgroups of G. Find all the left and right cosets of each
subgroup.

O O O T QD -

D OO0 |T|Y (K|
O |T|D Q| |D
O | |k O |T|IT
DRI D (T|O|O
leonieoN] _JioRIoNIeoN ol
| |TO |[Q|d|dD

EXERCISE 9:

If G=(a, b | a*=b%=1, ab =ba)and H is the cyclic
subgroup generated by b, find the right and left cosets of
Hin G.
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EXERCISE 10: In the dihedral group

Dy =(a, b | a®=b?=1, ba=alh), simplify
(i) a’b*a?baba®ba’a’b?a;

(i)  a*b®a’h~"a’ba.

EXERCISE 11:

If |G| = 68, find the order of H given the following clues:
(@ H<Gand |H| < 32.

(b) H is non-cyclic.

EXERCISE 12:

Find |H| given the following clues.

(a) H is a subgroup of some group of order 100.
(b) H contains no element of order 2.

(c) H is not cyclic.

EXERCISE 13: Find |H| given the following clues:
(@) H is a subgroup of some group G of order 168.
(b) H is a subgroup of another group K of order 112.
(c) H is not cyclic or dihedral.

(d) H contains an element of order 7.

(e) H has more than two left cosets in K.

EXERCISE 14: If G is a group, the centre (zentrum in
German) of G is defined to be

Z(G) ={g € G| gx = xg for all x € G}. In other words,
it’s the set of all elements that commute with everything.
(@) Prove that Z(G) is a subgroup of G.
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(b) Find Z(D2y). [HINT: You’ll need to consider odd and
even values of n separately.]

EXERCISE 15: Find the numbers of elements of each
order in the following two groups whose group tables are

given:
(a)

1 a b c
l|1|la|bj|c
alall|c|b
blblc|1l]|a
c|lc|blal|l

(b)

1 a b c
l|1|la|bj|c
alal/blc|1
blblc|1l]a
clc|l|al|b

EXERCISE 16: Find the orders of the elements in the
cyclic group of order 6.

EXERCISE 17: Find the orders of the elements of the
following three groups: G = Zg H = Z#;0, K = Dg
Show that no two of these groups are isomorphic.

EXERCISE 18: Which of the above three groups of
order 8 is cyclic? Which are abelian?
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EXERCISE 19: Find (9), the cyclic group generated by
9, in the group Zioo*. This consists of all the integers from
1 to 99 that have no factors in common with 100. The
operation is multiplication modulo 100. Also determine
the order of 9 in this group.

EXERCISE 20: Find the order of the following elements
in the group Zioo (consisting of all the integers from 0 to
99 under addition modulo 100): 2, 9, 6, 15.

EXERCISE 21:
Find the left and right cosets of {1, B} in the dihedral

group
Dp=(A B | A5=B2=1 BA=A"B).

EXERCISE 22: G is the group whose table is given
below. Show that H = {1, a, d, f} and K = {1, d} are both
subgroups of G. Find all the left and right cosets of each
subgroup.

1 a b c¢c d e f ¢
111lalbfc|d|e]|f]|dg
ala|d]e|g|flc|1l]|b
blb|g|d|l|c|a|e]|f
clcle|l|d|b|f]lg]|a
d{d|flc|b|1l]|g|la]e
ele|b|flalgld]c]|1
fl{fll|glela|b|d]|c
glglcla|f|le|l]|b]|d
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EXERCISE 23: Find the order of H given the following
clues:

(a) His a proper subgroup of a group of order 52;

(b) H is non-abelian.

EXERCISE 24: Find the order of H given the following
clues:

(@) H is a subgroup of some group G of order 100.

(b) H is a subgroup of another group K of order 40.

(c) H is not cyclic or dihedral.

EXERCISE 25: Find the order of H given the following
clues:

(a) H is a subgroup of some group G of order 20.

(b) H is non-abelian.

(c) G contains an element g of order 2 and an element h
of order 5.

(d) H contains h but not g.

EXERCISE 26: Complete the following group table and
find the orders of the elements.
1 a b c d e

1

a l|c|b d
b d a|l

c d|e alb
d c el b|a
e b|a c|1
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EXERCISE 27: Find the numbers of elements of each
order in the cyclic group of order 12.

EXERCISE 28: Find the order of the following elements
in the group Z:7* (consisting of all the integers from 1 to
16 under multiplication modulo 17): 2, 6, 9, 16

EXERCISE 29: Find the orders of the elements of the
following three groups:

G = the group {£1, i, £(1 + i)/\2, £(1 — i)/N2} under
multiplication;

H = the group of symmetries of a rectangular box;

K = the group of order 8 whose group table is:

1 -1 i —-i j - k -k
101 (-1 i|-i|J|-|k|-k
11|12 || 0P || |-k]|Kk

Show that no two of these groups are isomorphic.

198



SOLUTIONS FOR CHAPTER 4

EXERCISE 1:
There are 22 = 8 matrices of this form, over Z,.

lab\/la'b’ 1 a+a b+b +ac
Olc||O1c (=0 1 c+c so the set
00 001 0 O 1

is closed under matrix multiplication. The associative
law holds, as it always does with matrix multiplication.
The identity matrix has this form.

lab 1 —-a ac-Db
Finally the inverseof [0 1cC | is|0 1 —C

00 00 1
which has the required form.

110\/100 111 100
Since|{010 |[011 |={011 | while|O11
001/\001 001 001

110 110
010 {={011 |the group doesn’t satisfy the

001 001
commutative law.

111 110
EXERCISE2:({011 |,|011 |,

001 001

111 110
EXERCISE 3: Take A=|011 [andB=(010 |.
001 001

199



EXERCISE 4:

The elements of Z, @ Zg are vectors of the form (x, y)
where x € Z, and y € Zs.

If 4(x, y) = (0, 0) then 4x = 0 mod 2 and 4y = 0 mod 8.
This places no restriction on x: X =0 or 1 but 4y = 0 means
y=0,2,4o0r6.

But (0, 0) is the identity and (1, 0), (0, 4) and (1, 4) have
order 2.

So the elements of order 4 are thus (0, 2), (0, 6), (1, 2) and
(1, 6).

EXERCISE 5:
There are 6 elements of order 7, namely e®7, ..., e5®/7 and
4 elements of order 8, namely ™4, g3t/4 g5mi/4 g7i/4,

EXERCISE 6:
Since bc = ¢ the element b is the identity.
a b C d

a a
b a b c d
c c a

d d

Now dc cannot be any of a, ¢ or d because that would
result in a repetition in either the row or the column
corresponding to d. So dc must be b. In a similar way
we can complete the table:

200



o O T w

O Qv |T|D
o0 (T |T
T (Oalo
QD |IT(Q(O |

EXERCISE 7: Filling out the entries for the identity we
get:

O |T|ID ||

1
a
b
C

Now ab =1 orc.

Case I: ab =1: We can now complete the group table:

1 a b C
1 1 a b Cc
a a c 1 b
b b 1 c a
C Cc b a 1

Case Il: ab =c: The group table is thus:

1 a b Cc
1 1 a b Cc
al| a Cc
b b
c c

Now bc =1 or a.
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Case I1A: bc = 1: The group table is thus:

1 a b Cc
1 1 a b Cc
a a c
b b c a 1
c C 1

If a2 = b then ac = 1, a contradiction. Hence a®> =1 and
so the group table is:

1 a b Cc
1 1 a b Cc
a a 1 c b
b b c a 1
c Cc b 1 a
Case II1B: bc = a: The group table is:
1 a b Cc
1 1 a b Cc
al| a c
b b c 1 a
c C a
This can be completed in two possible ways:

1 a b ¢ 1 a b ¢
111 | a|b|c 1l1]a|b|c
alal|1]|c|b ala|b|c]|1
bl b|c| 1] a bl b|c| 1] a
clc|b|laj]l clc|1l]al|hb
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Of these four possibilities the ones that arise in Cases |
and I1A are isomorphic to the second possibility under
Case IIB. They therefore represent the same group with
different notation. This group has just one element of
order 2. The remaining possibility (the first under Case
[1B) is essentially different in that it has 3 elements of
order 2. So there are two groups of order 4. One is C,4
(cyclic) and the other is D4 = V4 (dihedral).

EXERCISE 8:
The fact that H and K are subgroups of G can be most
easily seen by extracting their group tables from the main
table:

H

o0 |k
[l ioNIaoN o]
O |, Qo

1
C
d

K
1
b

ol
~i=dl=2

Since every entry in each table belongs to the subset in
each case each subset is closed under multiplication.
Clearly each contains the identity and, since 1 appears in
each row and column, every element has an inverse within
the respective subset.

The left cosets of H in G are:
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H={1,c, d}and
aH=(al, ac,ad} ={a, b, e}.
The right cosets of H in G are:
H={1, c, d} and
Ha ={1a, ca, da} = {a, e, b}.

NOTE that in this example the left and right cosets are
the same, even though the group is non-abelian.

The left cosets of K in G are:
K={1, b}, aK ={al, ab} ={a, c} and
dK = {d1, db} = {d, e}.

NOTE that we didn’t waste our time with bK or cK
because those elements were already included and we
would have simply repeated the first two cosets.

For example bK = {b1, bb} = {b, 1} = {1, b}. So
always use as a representative for a new coset, an element
that hasn’t yet been included.

The right cosets of K in G are:
K={1, b}, Ka={1a, ba}={a, d} and
Kc ={1c, bc} ={c, e}
NOTE that in this case the left cosets and the right cosets
give two different subdivisions of the group.

204



EXERCISE 9:
The elementsare: 1, a, a? a3
b, ab, a%b, a’b,
b2, ab?, a%b?, a®h?.
The left cosets are H = {1, b, b?}
aH = {a, ab, ab?}
a’H = {a?, a’b, a®h?*}
and a®H = {a3, a®b, a®v?}
Of course, since this group is abelian, the left cosets are
the same as the right cosets.

EXERCISE 10:

(i) Using b? = 1 this becomes a’ba-?baba’ba?a’a, and
combining powers of a we get

a’ba?baba’pbal®. Using a® =1 we get a’ba*baba®h. Now
we need to make use of the relation ba=a™h. Moving a
b past an a, inverts it. Moving the second last b to the back
we get a%babaa3b? = a’ba’bad. Moving the next b down
gives a?ba*a=3b = a%bb = a2,

(ii) a®b®a’b'a’ba = aha’ba’ha = a’ba’ba’alb =
a’ba’bab = a*ha’a!=a’ha=a%.

EXERCISE 11:

By Lagrange's Theorem |H| divides 68. Since |H| < 32, |H|
=1, 2,4 or 17. Since H is not cyclic we can eliminate 1,
2 and 17. Hence |H| = 4.
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EXERCISE 12:

By Lagrange's Theorem |H| divides 100. H being non-
cyclic rules out 1 and the primes 2 and 5, leaving 4, 5, 10,
20, 25, 50 and 100. Now groups of even order must
contain an element of order 2. Since H doesn’t, it must
have odd order, leaving 25 as the only possibility.

EXERCISE 13:

By Lagrange’s Theorem, |H| divides both 168 = 8x3x7
and 112 = 16x7 and therefore must divide their greatest
common divisor, which is 56. Since H contains an
element of order 7,

|[H| must be divisible by 7. This limits the possibilities to
7, 14, 28 and 56. Now since H is neither cyclic nor
dihedral, |H| can’t be prime or twice a prime [groups of
order p are cyclic; groups of order 2p are cyclic or
dihedral]. This narrows down the possibilities to 28 and
56. Now if |H| was 56 there would be exactly 2 left cosets
in K which has order 112. By clue (e) this isn’t so, and
hence 56 is ruled out. Therefore |H| must be 28.

EXERCISE 14:

(a) This is easily verified. Note that gx = xg implies that
Xg—l = g—lx ]

(b) Dan = (a, b|a"=b?=1, ba = ah). If a" € Z(G) then a'b
= ba’ = a™'b, so a¥ = 1 which means that n | 2r.

If n is odd this means n | r and so a" = 1.

If nis even a"is 1 or a"2.
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Similarly one can check that no element of the form a'b
commutes with a. So Z(D2,) = {1} if nis odd and
{1, a"2} if n is even.

EXERCISE 15:

(a) has the identity plus 3 elements of order 2.

(b) has the identity, one element of order 2 (viz. b) and 2
elements of order 4.

[The fact that they differ in their structure in this way
means that they’re non-isomorphic, or essentially
different. These two tables reflect the only two possible
group structures for a group of order 4.]

EXERCISE 16:
The cyclic group of order 6 has the form:
{1,9,9% 0% g% g°y where g° =1
Clearly g has order 6.
(99)?% = ¢* (%)% = ¢® = 1 and so g has order 3.
(9%)? =1 and so g® has order 2.
(9%?% = g8 = ¢, (g*)°® = g*? =1 and so g* has order 3;
The powers of g® are g5, g° = g%, g5 = g3 g® = g2, g*° =
g.
Finally (g°)° = g = 1 and so g° has order 6.
The cyclic group of order 6 thus has:
1 element of order 1;
1 element of order 2;
2 elements of order 3;
2 elements of order 6.
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NOTE: orders 4 and 5 are missed out. Can you guess
why?

EXERCISE 17:
G: 1,3,5,7have order 8

2, 6 have order 4

4 has order 2

0 has order 1
H: 3,7,13 and 17 have order 4

9, 11 and 19 have order 2

1 has order 1
K: The dihedral group (A, B|A*=B2=1, BA = A!B)
has elements: 1, A, A%, A3, B, AB, A’B, A°B. Of these:
A, A3 have order 4. A2, B, AB, AZB, A3B have order 2
and 1 has order 1.

Listing the numbers of the elements of orders 1, 2, 4 and
8 respectively, as vectors we have:

G: (1,1,2,4); H: (1,3,4,0); K:(1,5,2,0).

The differences show that these three groups are mutually
non-isomorphic. There are in fact 5 distinct groups of
order 8, the above three plus two others.

EXERCISE 18:

G is cyclic (and hence abelian) because it contains an
element of order 8; H is abelian but not cyclic; K is non-
abelian (and hence not cyclic).

NOTE: There’s always only one cyclic group of any
given order. In other words, all cyclic groups of order n
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are isomorphic. A representative example of the cyclic
group of ordernis Z,={0, 1, ... n— 1}, of integers modulo
n under addition.

EXERCISE 19:

The powers of 9 are:

9! =9, 92=81, 9% =729 = 29 mod 100 and so on. Rather
than accumulate the higher and higher powers we can
simply multiply by 9 at each stage to get the next:
94=9x29=261=61

Then comes 49, 41, 69, 21, 89 and finally 1.

So(9) ={1,9, 81, 29, 61, 49, 41, 69, 21, 89}. There are
10 elements in this cyclic subgroup and so 9 has order 10
under multiplication modulo 100.

EXERCISE 20:

2: Remember that the operation is addition, so we need to
keep adding the generator to itself, that is, taking higher
and higher multiples, not powers. We want the smallest
positive integer n such that 2n = 0 mod 100, or in other
words, such that 2n is a multiple of 100. The answer is
clearly 50.

9: We want 100 to divide 9n. Since 100 has no factors
in common with 9, we’d need n itself to be a multiple of
100. The smallest positive such n is thus 100. So 9 has
order 100 in this group.

6: We need 6n to be a multiple of 100. Since 2 divides
both 6 and 100 we need 50 to divide 3n. But since 50 has
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no factor in common with 3, we’d need 50 to divide n. So
6 has order 50.

15: 15n = 0 mod 100 means that 3n = 0 mod 20. Since 3
Is coprime with 20, we need n=0mod 20, so 15 has order
20.

EXERCISE 21:
Left cosets:
1 A A? A3 A* A°
B AB A?B A’B A‘B A°B
Right cosets
1 A A? A3 A* A°
B BA BA?2 BA3 BA* BA®

I.e.

1 A A? Al A A
B A°B A‘B A’B A’B AB

EXERCISE 22:
H and K contain 1 and are closed under multiplication and
inverse as these tables show:

H 1 a d f
1l1|a|d|f
ala|d| f|1
did|f|1]a
flf|l|la|d
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Q|-
o |la

K
1
d

The left and right cosets of H are

1 adflbceg]
The left and right cosets of K are

11 d|la f|b c|e g

EXERCISE 23:
By (a) [H| =1, 2, 4, 13, 26 and by (b) |H| = 26.

EXERCISE 24:
By (a) |[H| divides 100. By (b) [H| divides 40. Hence |H]|
divides 20 and so |H| =1, 2, 4, 10 or 20. By (c) |H| = 20.

EXERCISE 25:

By (a) |H| divides 20. By (c), (d) |H| is divisible by 5.
Hence |H| =5, 10 or 20.

By (b) |H| = 5. By (d) |H| = 20. Hence |H| = 10.

EXERCISE 26:

1 a b c d e
l{1|albjc|d|e
alall|c|ble|d
blble|(d|a|l]|c
clc|dje|l]alb
did|c|1l|e|b|a
ele|blald|c|1

211



EXERCISE 27:

If G =(A | A? = 1) there are 4 elements of order 12 (A,
A> A’ At), 2 elements of order 6

(A2, A1), 2 elements of order 4 (A3, A%, 2 elements of
order 3 (A% A®), 1 element of order 2 (A®) plus the identity
of order 1.

EXERCISE 28:

The group has order 16 so the possible orders of the
elements are powers of 2.

2:22=4,2*=16=-1, 28 =150 2 has order 8.

6: 62 =250 6 has order 8.
9:92=13=-4,92=16=-1,9*= 1509 has order 4.
15: 162 = (-1)?> = 1 so0 16 has order 2.

EXERCISE 29:

G is the group of 8" roots of 1.

The four elements +(1 + i)/N2, +(1 — i)/N2 have order 8,
+i have order 4, —1 has order 2 and 1 has order 1.
H=(A,B,C|A?2=B?=C?=1,BA=AB,AC=CA,CB
= BC). It has 7 elements of order 2 plus the identity.

K: has 6 elements of order 4 (i, %j, £k), only 1 element
of order 2 (1), plus the identity.

Since these three groups differ in the numbers of elements
of each order no two of them can be isomorphic.

212



